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LE'ITER TO THE EDITOR 
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Ahstran. We study the Flory model for the melting of a semiflexible polymer chain on a 
lattice. Using a field theoretical representation of the partition function, we propose a new 
mean-field theory. Within this theory, the system undergoes a first-order transition at 
temperature T,, between a liquid-like phase at temperature T >  7. and an ordered (almost 
stretched) phase at T <  T,, in agreement with the original Flory idea. In addition, we find 
a disorder point To (> TJ,  separating two liquid phases with different short-range correla- 
tions. For T >  T,, the shon-range correlations are isotropic, whereas for T <  TD, one- 
dimensional short-range order sets in. This disorder point may be relevant to the glass 
transition. 

The statistical mechanics of long, semiflexible, dense self-avoiding polymer chains has 
been a long-standing controversial problem [ 11. It is used to model the melting transition 
that occurs in polymer systems [2]. 

Flory has suggested [2] that under increasing stiffness there should be a first-order 
transition from a melted to a crystalline state. This has been disputed [3,4] on the 
basis of certain exactly soluble modekfor polymers, which have continuous transitions, 
and it has been shown rigorously [S, 61 that a certain aspect of Flory mean-field theory, 
namely the existence of a completely frozen crystalline state, is incorrect. Baumgartner 
and Yoon [7] have performed Monte Carlo calculations for a model system on a finite 
lattice and found results corroborating Flory theory. A transfer matrix study of the 
model in ZD by Saleur [8], shows the existence of a continuous transition from a 
massless (critical) high-temperature phase to a partially ordered phase, in contradiction 
with the results of [7]. In a more recent calculation [9] Baumgartner reached the 
conclusion that intramolecular interactions alone do not lead to a phase transition. 

In this letter, we propose a mean-field theory for the polymer melting problem. 
This theory applies in high enough dimensions, and should not be taken too quantita- 
tively in d = 2. 

First, we present a field theoretical representation of the model, from which we get 
simple upper and lower bounds. By performing the saddle-point method (SPM) on the 
functional integral, we obtain an isotropic mean-field theory which gives very good 
results, hut corrections to mean-field are large at low temperature and spoil this result. 
We take this as an indication that the starting point of our expansion is inadequate, 
and so we propose an anisotropic mean-field theory. This new mean-field gives results 
very close to the previous one: the theory resembles qualitatively the theory of Flory, 
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corrections have been performed in the low-temperature phase, leading to a weak 
temperature dependence, in agreement with [SI and [6] .  
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In summary, the system displays a first-order phase transition between a low- 
temperature one-dimensionally ordered phase (with weak temperature dependence) 
and a high-temperature liquid-like phase. 

In addition, in the liquid phase, we find a disorder point at temperature T,> T,; 
this point is the boundary between two liquids: one with isotropic short-range correla- 
tions ( T >  TD) and one with anisotropic (one-dimensional-like) short-range correla- 
tions ( T < TD). A preliminary account of these mean-field methods can be found in [ 111. 

We consider a d-dimensional hypercubic lattice of N = Ld sites, with periodic 
boundary conditions, and its associated Hamiltonian paths. We recall that a Hamil- 
tonian path visits all sites of the lattice once and only once (see figure 1). Hamiltonian 
paths have often been used to  model collapsed polymer globules [ 121. To mimick the 
flexibility of the chain, we attribute an energy loss E when two consecutive monomers 
are not aligned, that is whenever the Hamiltonian path makes a turn (comer). For 

boundary conditions play a role only in subdominant terms of the free energy. The 
partition function of the system, at inverse temperature p = 11 T, reads 
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where (Z) denotes the ensemble of all Hamiltonian paths, and N J K )  denotes the 
number of comers present in path X. 

Figure 1. A Hamiltonian path on a square lattice. Inside the dashed square is shown the 
lowest energy excitation of the fully stretched configuration, with six comers. 

In order to  perform calculations, we use a technique, presented in 1131, which 

We start from the following identity: 
yielded excellent results in the enumeration of non-weighted Hamiltonian paths. 

with 

where p.(r)  is an n-component real field defined in each direction n = 1,. . . , 4  
attached to all points r of the lattice. The operator A",., is 1 if r and r' are nearest 
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neighbours in direction a, and 0 otherwise, and (A:,,)-’ denotes its inverse. The 
expression (2) is O(n) invariant. To prove the identity (2), we make use of Wick‘s 
theorem. At each site of the lattice, one must choose either a term of the form i q t ( r )  
or of the form eCoeqm(r) . q o ( r ) .  The first term will be seen as describing a path going 
through r in direction a without turning, whereas the second one assigns a weight 
e-” to a path turning from direction (I to p at point r. The propagator of the field 
q , ( r )  is A,. and thus, the elementary contraction is given by: 

q : ( r ) q i ( r ’ )  = & & i J Z  (3) 

where U and U denote any of the n components of the fields q,(r) .  According to 
Wick‘s theorem, we must contract all fields q o , ( r )  using (3). Thus, the result is a sum 
over all possible Hamiltonian paths, connected or not, covering the whole lattice, with 
a weight e-Br at each turn. Further, since the propagator conserves the index U of 
component of the field, the summation over the component index U yields a factor n 
for each connected part of the paths. The term proportional to n thus yields the 
contribution of all connected paths, and in order to extract it, it is customary [14] to 
take the limit n + 0. 

Rewriting the product in (20) as 
d d 2 

(40) 
-(1-e-B”) 1 qt ( r )+ ie-os(  1 q.(r)) 
2 a=, 0 = 1  

and using the Schwartz inequality 

we get 

where 

q(p) = 2(l+(d-  1) e P )  

is an effective coordinationmmber. 
This in turn yields 

where F is the free energy per monomer and e = 2.718 28. 

so, we write the exponent: 
As in [13], we evaluate the free energy by  the saddle-point method. In order to do 

A=A,-xlog x-q:(r)+e-6‘ x qm(r).qo(r) (7) , ,<a 

The saddle-point equation JA/Jqm(r) = O  reads 
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It is natural to look for a homogeneous and isotropic solution Q. This defines the 
isotropic mean-field (IMF).  We break the O ( n )  symmetry by choosing (p in a given 
direction, say I. 

We obtain 

'p:=:. 4 
(9 )  

At this mean-field levei, the partition function and free energy per monomer read: 

( loa)  OJ-~-N+NIOB d8) 

This is just the upper bound in ( 5 ) .  Note the similarity of (loa) with the equation 
NH=(q/e)N of [13], counting the number of Hamiltonian paths on a lattice with 
coordination number q. We see that when T- t  m (PE  = 0), we recover q = ZD, whereas, 
when T +  0 (BE = m), q = 2, and the paths are fully stretched. There is a temperature 
TF at which q ( p )  =e, and the free energy vanishes (in three dimensions, TF= 0.58.~).  
Below this temperature, the free energy becomes positive (with a maximum at Ts= 
0.31 E, where the entropy vanishes), in obvious violation of the bounds given in ( 5 ) .  
Thus, it is clear that the I M F  cannot be valid below TF. These results are quite similar 
to the 'old' Flory theory [ 2 ] ,  where q ( p )  was replaced by q ( p )  - 1. Ourresults, however, 
give a much lower free energy. 

The computation of the quadratic corrections to the saddle-point is easily done, 
by expanding the action (4) around 'pI. There is one longitudinal mode and ( n  - 1) 
transverse modes associated with the breaking of the O(n) symmetry. 

The free energy per site reads 

where BZ denotes the first Brillouin zone: k, = 21?r/L, I = 0 , .  . . , L - 1, and 

-9 1 1 

and 

( i i b j  

We have computed the free energy F, as a function of the temperature in dimension 
d = 3. It turns out that fl is significantly larger than Fo and since the latter was an 
upper bound, it indicates that the validity of the IMF is questionable. 

If we remain at the IMF level; the result of the calculation is that there is a first-order 
transition between a high-temperature liquid-like phase ( T >  TF) and a low-temperature 
frozen phase (T < TF). This frozen phase does not come out as a solution of the 
saddle-point equation ( 8 ) ,  but is dictated by the fact that the free energy of the model 
is necessarily negative. Physically, at zero temperature, the chain is fully stretched 
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(making its turns on the surface of the lattice); this one-dimensional character, which 
persists at low temperature [S, 61, cannot be treated adequately by mean-field, as is 
well known. 

In order to cure the above-mentioned difficulty, we perform an anisotropic mean- 
field (AMF). We choose a direction 1, which we treat exactly, and we make a mean-field 
approximation on the remaining (d - 1 )  directions. Assuming a homogeneous and 
isotropic field (a in the ( d  - 1) directions, the partition function reads 

N 
ZAM,=lim - n d'pl(r) exp 

"-on 'I , 
where 

c = (?)(l+(d -2) e-8'). 

We rearrange the product over r in (12n) as 

Introducing n-vector spins S,, with normalizations S'= n, n+O, together with the 
identity [15]: 

HZ 
dp(S)  e".' = 1 +- I 2 

where dp(S) is the normalized measure on the O(n) sphere of radius &, equation 
(12a) can be rewritten as: 

where 

and e, is the unit vector in direction 1. 
The.last integral in (140) is a one-dimensional O(n) model, with n +O, in a field. 

It can be easily computed by diagonalizing its transfer matrix. The two eigenvalues 
are given by . 

The variational free energy per monomer reads: 
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Minimizing FAMF with respect to q, we get the following results: 
(i) There is a first-order transition at a temperature Tc = TAMF. In d = 3, TAMF = 

0.688, slightly larger than TF. 
(ii) At low temperature q =0, and the polymer is fully stretched (crystal). At this 

mean-field order, the low-temperature phase is again inactive (full frozen), but it 
provides a sensible starting point for a systematic expansion. 

(iii) At high temperature, (a =0, and the free energy is very close to the IMF. It is 
a iiquid-iike phase, where the turns are mobiie and entropicaiiy favoured. There appears 
a special point To, called a disorder point [lo] of the second kind, at which the second 
eigenvalue A -  vanishes, that is: 

C = B2. (17) 
In three dimensions, we find To = 2.248. At this disorder point, the correlation 

disappear. There is an exact balance between the energy loss due to making tums, and 
the associated entropy gain. 

Thus, for T >  To, the liquid phase has isotropic short-range order, whereas for 
T < To, one-dimensional short-range order builds up announcing the low-temperature 
anisotropic ordered phase. 

Gujrati and Goldstein [6]. At the transition point, TAM,=0.68a, the free energy of 
Gujrati and Goldstein is - 

iengih in v.aiiijhes and ih.us One~~~mensionai c'naracier or' 
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Figure 2. Free energy per monomer as a function of temperature. (a) Isotropic mean-field 
(IMF). (b) Anisotropic mean-field (AMF). TD is the disorder point. (c) The upper bound 
of Gujrati and Galstein. 

The fluctuations around the AMF can, in principle, be calculated. In the low- 
temperature phase, this calculation amounts to expanding around Q = 0 therefore, it 
is just a usual low-temperature expansion. The lowest-order excitationt is shown in 

t Note that equation (IS)  holds only if one expands around the ground State where all the bulk monomers 
are parallel. 
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figure 1 and yields: 

F = - (d - l ) T  (18) 

In the 
low-temperature phase, the average number of aligned monomers between two comers 
(related to the inverse of the internal energy) is exponentially large: equation (18) 
indeed yields I=e6"T/6(d-l), so that the low-temperature phase can he viewed as 
frozen (almost fully stretched). For d =3, we find 1-566 at TAMF. 

We have not been able to perform the full calculation of fluctuations in the 
high-temperature phase, but the smallness of the fluctuations in the low-temperature 
phase strongly suggests that the AMF captures the correct physics. Finally, figure 2 
shows that IMF and AMF are very close. 

In conclusion, we have presented a new mean-field theory for the Flory model of 
poiymer meiting. -we find a iirst-order transition between an aimost stretched phase 
at low temperature and a liquid phase at high temperature. The low-temperature phase 
is characterized by a weak temperature dependence, and the overall phase diagram is 
qualitatively consistent with the Flory picture [2]. We find also a disorder point TD in 
the liquid phase, which is the boundary between two types of short-range correlations 
(isotropic and one-dimensional). This is similar to the '2T; point in the F-model 

slowing down of the dynamics. In a dense polymeric system such as the one considered 
here, the dynamical implications are likely to be much more severe. It is thus tempting 
in these (and perhaps other) systems to relate the disorder point to the glass transition, 
in contrast to the Gibbs and Di Marzio [18] theory of the glass transition. 

It is thus negative, hut again very small, since at TAMF, F=-1.76x 
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